3,202 research outputs found

    Odd-particle systems in the shell model Monte Carlo: circumventing a sign problem

    Full text link
    We introduce a novel method within the shell model Monte Carlo approach to calculate the ground-state energy of a finite-size system with an odd number of particles by using the asymptotic behavior of the imaginary-time single-particle Green's functions. The method circumvents the sign problem that originates from the projection on an odd number of particles and has hampered direct application of the shell model Monte Carlo method to odd-particle systems. We apply this method to calculate pairing gaps of nuclei in the iron region. Our results are in good agreement with experimental pairing gaps

    Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors

    Full text link
    We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame's response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al.~[Chaos 22, 023129 (2012)]. By analyzing the temporal variation of the phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.Comment: 18 pages, 7 figure

    Oscillating magnetoresistance due to fragile spin structure in metallic GdPd3_3

    Get PDF
    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades--colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the investigation of oscillating MR in a cubic intermetallic compound GdPd3_3, which is the only compound that exhibits MR oscillations between positive and negative values. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3_3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system--a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3_3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.Comment: 10 pages, 7 figures. A slightly modified version is published in Scientific Report
    • …
    corecore